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Understanding Fractions as Quantities:

Is it Related to Fraction Computational Skill?

It is commonly believed that students find the rules for manipulating

fractions meaningless and arbitrary mainly because they lack a quantitative

notion of fractions (e.g., Carpenter, Coburn, Reys, & Wilson, 1976; Post,

1981). That is, they seem to forget or not know that the fractions they are

manipulating represent quantities. Surprisingly, there is no direct evidence

for a relationship between such fraction understanding and fraction

computational skill. Previous work has tended to focus separately on one or

the other aspect of students' difficulties with fractions. There is also some

question as to how to properly define and assess a quantitative notion of

fractions. The usual tasks, for example, those involving locating fractions

on a number line (e.g., Larson, 1980; Behr & Bright, 1984), ordering two or

more fractions (e.g., Behr, Wachsmuth, Post, & Lesh, 1984; Post, Wachsmuth,

Lesh, & Behr, 1985), and generating equivalent fractions (e.g., Hunting, 1984)

have yielded ..., "?rent and sometimes conflicting results, and no one task

seems more definitive than the rest.

The purpose of this study was to assess children's and adults'

quantitative understanding of fractions in a new and potentially definitive

way, and determine whether this understanding is related to fraction

computational skill. A computation task was used to classify subjects as

"good" or "poor" at fraction computation. An estimation task was used to

classify the same subjects as "good" or "poor" at understanding fraction size.

If such understanding is important to learning or remembering fraction

computation rules, we might expect subjects to be either "good" at both or

"poor" at both.

Functional measurement methodology (cf. Anderson, 1981, 1982), borrowed
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from experimental psychology, was applied to the problem of assessing

understanding of fractions as quantities. Subjects were asked to estimate the
size of fraction symbols on a zero-to-one scale. Estimates were

conceptualized in terms of the integration of two pieces of information, size

of the numerator and size of the denominator. Main interest was in

determining the algebraic structure of the information
integration as revealed

in the overall pattern of a set of estimates. By definition, estimates of

fraction size should show the pattern of a dividing rule,

estimate = numerator / denominator,

even if they are not precisely accurate. This normative rule provides a

meaningful and useful way to define correct
understanding, and a base for

i-terpreting difficulties. Estimates by subjects with incomplete or incorrect

undelstanding of fraction size should deviate from the dividing rule, and the

nature of the deviation should mirror the nature of the difficulty.

An area estimation task was included to validate subjects', especially

children's, understanding of task requirements and use of the response scale.

The same subjects were presented with partially shaded circles and asked to

estimate the amount shaded. No understanding of fraction size was required,

only a perceptual response to shaded area and appropriate use of the response
scale. Thus, area estimates by all subjects, regardless of understanding of

fractions, were expected to show the correct pattern.

Method

Fraction environment. Fifteen proper fractions served as quantities for

the estimation tasks, and as a pool for creating problems for the computation
task. The fractions were generated trom the 3 x 5, numerator x denominator

factorial design shown in Figure 1. Numerators were 1, 2, and 3.

Denominators were 4, 6, 8, 10, and 12. Each point in Figure 1 represents the

value of one of the resulting fractions. Note that the curves form a linear
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fan. This pattern graphically illustrates the nor

size, numerator/denominator.

Computation task. Subjects were asked to "thin

eight twofraction arithmetic problems. The problems

mative rule for fraction

aloud" as they solved

were created according

to the 2 x 2 x 2, arithmetic operation (addition or mul tiplication) x

denominator relation (same or different) x fraction type (unit or nonunit)

design shown in Table 1. For each subject, fractions were

from the appropriate subset of the fracticn pool, subject t

randomly selected

n the constraint

that the resulting set of eight fraction pairs utilized 13 o

3 .

f the 15 different

fractions. The order of the eight problems was then randomiz d. Subjects

were provided with paper and pencil, and the entire task was videotaped.

Fraction estimation task. Subjects were asked to make graphic ratings of

the size of 15 fraction symbols. Fractions were presented one at a time on a

computer screen. A 16 cm horizontal line served as the response sc ale (see

Figure 2). Left and right ends were labelled "0" and "1", respectiv

that the response scale was essentially an unpartitioned number line

ely, so

from zero

to one. Subjects responded to a given fraction by moving a short vert ical

line, positioned at the zero end, along the response scale until they t

its position corresponded to the displayed fraction size. There ,,,re 99

possible positions on the response scale, corresponding to numerical respo

of 0.01 to 0.99. Order of presentation of the 15 fractions was randomized

separately for each subject for each of three replications.

Area estimation task. This task was the same as the fraction estimation

task except that the 15 fractional quantities were presented as partially

shaded circles, and the ends of the response scale were labelled with unshaded

and shaded circles representing zero and one, respectively (see Figure 3).

Order of tasks. Subjects completed the computation task, fraction

estimation task, and area estimation task, in that order, in a single session.

ought

ses
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Session length varied from 30 to 60 minutes.

Subjects. Thirty-seven seventh graders and 32 adults participated in the

study. Children were recruited through newspaper ads and flyers. They were

currently or had just completed reviewing fractions in school. Adults came

from two different subject pools in order to maximize the chances of obtaini7g

e range of adult fraction computational skill. First-semester students

currently enrolled in a mathematics course were recruited from an introductory

psychology course. Fifth- and seventh-semestet students who had not taken a

mathematics course since high school were recruited from upper division

communication studies courses.

Results

Classification of computational skill. Subjects were classified as

"good" at fraction computation if at least seven of their eight solutions were

scored as correct; otherwise, they were classified as "poor". This

classification scheme ensured that a subject who, for example, added across

numerators and across denominators on problems involving addition of fractions

with different denominators, but got all other problems correct, would be

classified as poor. Using this scheme, 19 children and 18 adults were

classified as good at fraction computation, and 18 children and 14 adults as

poor.

Rules for fraction size. Figure 4 shows the five observed rules for

fraction size. Each panel presents the mean estimates of one subject. Figure

4A shows the normative, numerator/denominator rule. Figure 4B shows a

numerator-only rule. Estimated fraction size varied directly with numerator

size, but denominator size had no effect. Figure 4C shows an analogous

denominator-only rule. Estimated fraction size varied inversely with

denominator size, but numerator size had no effect. Figure 4D shows a

"neither" rule. Neither nimerator size nor denominator size was
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These results are important for understanding Lhe behavior of subjects

whose estimates of fraction symbols in the previous task deviated from the

numerator/denominator rule. These deviations were interpreted as indicating

a problem in understanding fraction size. However, one might argue that these

subjects simply did not use the response scale appropriately. The appearance

of the normative linear fan pattern in their estimates of shaded area provides

a strong case against this argument, since this pattern depends on appropriate

use of a very similar response scale.

Conclusions

Two aspects of the results are of interest here. The first has to do

with the present information integration analysis of correct and incorrect

understarding of fractions as quantities. Estimates of 54 subjects showed a

numerator/denominator rule and, on this basis, were said to reflect correct

understanding of fraction size. It should he noted that these estimates were

not precisely accurate. Mean percent error ranged from 3 to 34 percent.

Estimates cf the remaining 15 subjects showed deviations from the normative

dividing rule, and those of 9 could be exactly described and tested. The

various incorrect rules reveal both the nature and variety of students'

difficulties in understanding fraction size.

The present rule descriptions of correct and incorrect understanding of

fraction size are not new. In fact, they d4ffer little from those inferred by

Behr et al. (1984) from children's explanations for their response to a

twofraction ordering problem. The present experimental methods, however,

enable clear and convincing demonstrations of rule usage and precise tests of

fit. Thus, they give new force to ideas that have appeared in previous

research.

The second aspect of the results concerns the relationship between

fraction understanding and fraction computational skill. The results
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suggest a complex relationship. Incorrect rules for reaction size appeared

only for subjects who were poor at fraction computation and not at all for

subjects who were good. This suggests that an understanding deficit may

underlie or lead to computational difficulties, as is commonly believed.

However, not all subjects with poor computational skill lacked an

understanding of fraction size. Indeed, 42 and 86 percent of poor chiildren

and adults, respectively, showed correct understanding. The implication is

that many students use incorrect, often meaningless, rules for manipulating

fractions even though they understand the meaning of the symbols they are

manipulatiag. The picture that emerges is a quantitative notion of

fractions is only one of the factors determining fraction computational skill.
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Table 1

Fraction Computation Problem Types

Arithmetic Denominator Fraction

Operation Relation Type Example

Addition

Multiplication

Same Unit 1/4 + 1/4

Nonunit 2/12 + 3/12

Different Unit 1/8 + 1/6

Nonunit 3/4 + 2/10

Same Unit 1/6 x 1/6

Nonunit 3/8 x 2/8

Different Unit 1/10 x 1/12

Nonunit 3/10 x 2/4
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Table 2

Observed Rules for Fraction Size

Fraction

Size Rule

Children

Good`' Poor

Adults

Good Poor TOTAL

Estimation

Accuracy
b

Num/Denom 16 8 18 12 54 13

Num-only - 3 - - 3 73

Denom-only - 1 - - 1 31

Neither - 3 - 3 130

Whole No. - 2 - - 2 154

Not Class. 2 2 - 2 6 138

TOTAL 18 19 18 14 69

Accuracy 35 74 11 17

a Fraction computational ability as determined by a pretest.

b Mean percent error, calculated for each subject and averaged

over subjects.
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